Patterns of Sources and Sinks in the Complex Ginzburg-Landau Equation with Zero Linear Dispersion
نویسندگان
چکیده
The complex Ginzburg–Landau equation with zero linear dispersion occurs in a wide variety of contexts as the modulation equation near the supercritical onset of a homogeneous oscillation. The analysis of its coherent structures is therefore of great interest. Its fundamental spatiotemporal pattern is wavetrains, which are spatially periodic solutions moving with constant speed (also known as periodic travelling waves and plane waves). In the past decade interfaces separating regions with different wavetrains have been studied in detail, as they occur both in simulations and in real experiments. The basic interface types are sources and sinks, distinguished by the signs of the opposing group velocities of the adjacent wavetrains. In this paper we study existence conditions for propagating patterns composed of sources and sinks. Our analysis is based on a formal asymptotic expansion in the limit of large source-sink separation and small speed of propagation. The main results concern the possible relative locations of sources and sinks in such a pattern. We show that sources and sinks are to leading order coupled only to their nearest neighbors, and that the separations of a source from its neighboring sinks, L+ and L− say, satisfy a phase locking condition, whose leading order form is derived explicitly. Significantly this leading order phase locking condition is independent of the propagation speed. The solutions of the condition form a discrete infinite sequence of curves in the L+–L− plane.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملExact Solutions of the One-Dimensional Quintic Complex Ginzburg-Landau Equation
Exact solitary wave solutions of the one-dimensional quintic complex Ginzburg-Landau equation are obtained using a method derived from the Painlevé test for integrability. These solutions are expressed in terms of hyperbolic functions, and include the pulses and fronts found by van Saarloos and Hohenberg. We also find previously unknown sources and sinks. The emphasis is put on the systematic c...
متن کاملNonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. II: Convective/absolute transitions
We present experimental results on hydrothermal waves in long and narrow 1D channels. In a bounded channel, we describe the primary and secondary instabilities leading to waves and modulated waves in terms of convective/absolute transitions. Because of on the combined effect of finite group velocity and of the presence of boundaries, the wave-patterns are non-uniform in space. We also investiga...
متن کاملThe Complex Ginzburg-Landau equation for beginners
Several systems discussed at this workshop on Spatio-Temporal Patterns in Nonequilibrium Complex Systems have been related to or analyzed in the context of the so-called Complex Ginzburg-Landau equation (CGL). What is the difference between the physics underlying the usual amplitude description for stationary patterns and the one underlying the CGL? Why are there many more stable coherent struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 9 شماره
صفحات -
تاریخ انتشار 2010